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1. We shall consider the motion of a rectangular wing of large aspect 
ratio In a supersonic stream, so that the influence of the ends can, to 
a sufficient degree of approximation, be neglected. 

Assuming that the wing is thin and that the perturbations, which 
clearly vary with time, are small, we can employ the expression for the 
velocity Dotentlal derived in [ 1 1. 

Below we will solve the problem of torsional bending flutter of such 
a wing; in the solution we will not make the usual assumptions concerning 
quasi-steadiness of the stream and the exponential nature of the variation 
with time of the parameters under study. The figure shows the disposition 
of the wing in a system of coordinates fixed to it. 

The equations of 
In the figure, when 
dimensionless form: 

torsional bending deformations of the wing portrayed 
placed in a stream, can be written in the following 
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where 

The notation is borrowed from [ 2 1 ; moreover, the following dimension- 

(1.1) 

less quantities are introduced: 

(the subscript 1 has been dropped in (1.1) and hereafter). 

Evidently [o 1 = set-i (the quantity o is defined below). 

Expanding the deflection y(z, t), the angle of torsion 8(z, t) and the 

normal velocity to the wing surface vN(x, Z, t) in series with respect to 
Z, we obtain 

aD 

e(z, t) = 2 b, (1) cianz, 
*=--CO 

Here an = 277 n/l, where 1 is the span of the wing. Evidently 

v,, (5, t) = 6, (0 + (z - 20) i,, (1) - ub,, (1) (i.3) 

2. In accordance with the results of [ 1 I, in the Laplace transform 

plane we obtain s the expressions for the dimensionless force and moment 
appearing in (1.1). Moreover, for the n-th harmonic of the expansion in 
terms of the span we will have 
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P, (s) = [sTo (s) + s*Tl (.$)I A, (4 - [(is + 1) To (s) + WTI (4 - s*Ta (41 B,, (4 - 

- [sTo (4 + s*Tl (~)]a,, (0) + 130 (4 + s (5s - I) TI (4 - s2Tt (~11 b, (0) (2.1) 

.lf, (s) .I= [PST, (s) + s @s - I) TI (s) - s*T,! (s)J A, (s) - I$ (5s + I) To (4 + (2.2) 

+ (firs2 - cs - 1) T1 (s) - s*Tz (s) + s*Ts (s)] R,, (s) - [PST, (9) + s (@ - I) 7’1 (s) - 

- 97’2 (s)] a, (0) + [8Wo (s) + s 03 - 1) T, (s) - s (s - 1) Tz (s) + sZT, (.?)I b, (0) 

(2.1) and (2.2) are obtained by means of the formulas 

b 

pn (4 = \ AP,, (2, s) dx, M,, (s) = “s (z - x,,) Ap, (2, s) dr 
0 0 

Ap,, (I, s) = - p [s@,, (2, 0, b) + u ;!- o,, (5, 0, s)] 

The normal velocity on the wing in the expression of the potential 

@,(I. 0, S) is taken from formula (1.3) (see also [ 1 1 ). 

In what follous below we will employ the notation: 

-- 5 
3----g b 

?=I-cc, T, (s) = i dz i . . . i eYXfO (h,z) (dz) (2.3) 
0 0 0 

In addition to the dimensionless quantities already employed in the 
expressions (2.11. (2.2) and (2.3), we have 

(the subscript 1, as before, will be omitted in what 

Moreover, in the course of the analysis it proves 

X,E 2 
b ’ QrlI == ba, 

follows). 

to be convenient to 
put o = u/b; also, in formulas (2.1) and (2.2) we have A,(S), B,(S) - 

the transforms of a,(t), b,(t) in the Laplace plane, where a,,(O), b,(O) 

are the initial values of an(t), b,,(t). Applying the Laplace transform 
to the system (1.1) and taking account of formulas (2.1). (2.2), we obtain 

the following system of algebraic equations for the unknown quantities 

A,(s). B,(s): 

II + Y,,.G -- ET,‘S (2’” + ST,)] ,.I, (s) + (-- v,*s* + EP’ [ (5s + 1) To f cs”T, - s2T,j} U, (s) = 

= 1~’ - op’s (To + sT,)J un (0) + v~~.Qz,, (0) j- (-- v12s2 + cp’ [<nTo + s (cs - 1) T, - 

- s*T& b, (0) - v,,slj,, (0) (2.5) 
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t v21s2- E*’ [PST, + s (8s - 1) T1- s2Tall -4, (4 + (1 + -J!2ss2 + Em’ [B (Cs + 1) To + 

+ cw - cs - 1) Tl - s*Tz + s2Ta]} B, (s) = - (v& + E,’ [ psTo + 

+ s (3s - 1) Tl - s*Tzl} Q, (0) - vzw, (0) + ~vzd + E,’ [ BSsTt, + s (fKs - 1) T1 - 

- s (s - I) Ta + s2Ts]} b, (0) + v&%, (0) (2.6) 

where Tk = Tk(s) (k = 0, 1, 2, 3); from (2.3) and (2.4) it follows that 

these are holomorphic functions in the s-plane. 

In equations (2.5) and (2.6) the following notation is used: 

-,11 = l-s!_ 
a,4 ' 

v*1 zzz _!% 
a82 ’ 

=p = pu2 I’ ‘=- 
EP 

%L4 
-~, 

b (%n)4 1 

, %I PU2 b212 
-____ cm = --y 

“n” 
G (2xnj2f 

P 

Later we will make use of the relation c ’ = gc.‘. where 
P 

In order to obtain the required functions a,(t), b,(t) it is necessary 

to find from (2.5) and (2.6) the transforms An(s) and E,,( S) and then 

transform back to the original functions using the Riemann-Yellin trans- 

formation formula. 

This operation is rather cumbersome; however, certain qualitative con- 

clusions can be drawn without directly calculating a,,(t) and bn( t). Thus, 

from consideration of (2.5) and (2.6), it can be concluded that: 

(a) judging by the nature of the dependence of Tk upon S, the Riemann- 
Mellin integrals for a, and b,, are determined from a single calculation 

(see the characteristic frequency equation below). Consequently, in the 
exact solution the dependence upon time under our restrictions must be of 
an exponential nature; 

(b) t ‘, c ’ [see (2.7) 1 show that the influence of the stream is 
importan: onlS” for the lower modes. For the higher modes, by virtue of 
the relations 6 ’ l/n4, t ' l/n’, the influence of the stream becomes 

negligibly smal P . It is obv?ously sufficient to carry out an investigation 
of stability in a stream for the lowest modes of the expansions (1.2) only. 

It is not difficult to write down the equation for the determinant of 
the systems (2.5) and (2.6): 
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A (s) =-- [I + v,,.s’? - #ES (To + sT1)1 {I + v.& + E [p (5s + 1) To + 
+ (36s’ - i=s - 1) 7, - s’Ta + sV3]) + (V&B [ fw” + s (9s - 1) T, - 

- s’7’2]} (-v,@+ gc [(is + I) To + {sV1 - SVL]) = 0 

where c = c ‘. I In the limiting case c = 0, we obtain 

A (s) = A0 (s) : (I + v,,s*) (1 + v&) - vt,vlls~ z 0 

1157 

(2.9) 

(2.10) 

This last equation is obviously the frequency equation in the case of 

vibration of the wing in vacua. By analogy with it, we shall refer to (2.9) 

as the characteristic frequency equation for vibrations of the wing in a 

supersonic stream. 

3. Equation (2.9) can be re-written in the following form: 

A (s) = A,, (s) + SKI (s) + c*Kz (s) = 0 

where 

(3.1) 

A-1 (s) = (I + vllsz) Dz (s) - (i + vd) D, (s) + s’[ VPI~~ (s) - vd’s (s)] 
Kz (s) = 03 (s) Da (s) - & (s) h (s) 

Dl (s) = gs (To + sT1) 

De(s) = p (5s + 1) To + (55~~ - 5s - 1) 7’1 - ~‘72 + s2Ts 
Ds (s) = !3sTo + s (fis - 1) T1 - s2Tz 
n, (s) = g [(Cs + 1) To + ;s2T1 - s2Tt] 

Restricting consideration to the case of practical interest of a very 

rigid wing, i.e. neglecting c2 in comparison with t , we obtain the approxi- 

mate frequency equation in the form* 

Ao 6) + cK1 (s) = 0 

If a solution is now sought in the form 

(3.2) 

sj = sjO + EsjJ (i = 1, 2, 3, 4) (3.3) 

then, neglecting terms proportional to c2, for the coefficients sj we ob- 

tain the formula 

K1(sj”) 
“’ = - [aA (S) / aSI 8 = Sjo (3.4) 

Here sjo are the frequencies corresponding to the case of vibration 

of the wing in vacua: A,(sjO) = 0. 

. In this paper we do not make an estimate of the values of c for which 

the described method of approximate solution of the problem remains 
valid. 
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Carrying out the algebra, we eventually obtain the following express- 

ions: 

O- 
% a - f ial, s3,.z = f iat (3.5) 

*&= *@$!L , S3# ; = IF & y (3.6) 

n (0) = (I- v&) Da (f iw) - (I- VP+*) 4 (f io) - w* [aA (f io) - v1z4 (f Wl 

8 = YlM - va1v1t > 0 (condition for stability) 

In the majority of cases we can restrict consideration merely to the 

study of the solutions so obtained from the point of view of their 

stability with respect to time. In so far as the quantities sjo are purely 

imaginary, the conditions of stability in the first approximation 

(C2 = 0) take the form: 

He Sj’ < 0 (j q = 1, 2, 3, 4) (3.7) 

By’means of elementary transformations it Is not difficult to deduce 

that (3.7) can in the final analysis be reduced to the following two 

conditions: 

JITI t[ - J (Vikp WI) + iB (Vi,,.’ WI)] 7’0 (~oI) + IC (Vik, 01) + in (Vi@ w)] T1 (W + 

$ E (vip, 0,) 1‘2 (iwl) - C (vik, WI) T3 (iw)) > 0 (3.8) 

1111 ([ :1 (vik, oz) - iR (vik, w)] TO (- iw) + [C (vip, 02) - iD (vik, 02)] T1 (- iup) + 

+ l!c (Vik, WI) T.L (- i+) - c (Vii, 632) T3 (- io,)) 3 0 (3.9) 

In (3.8) and (3.9) the following notation is used: 

B (vik, O) = - ~g (I - v~&) + ,jw; (1 - v,~o?) + CA”~V,~ - p2,d 

c (Vi/., 0) = 02g (I - vi.Lw’?) - (p&G -;- 1) (I - v,,d) - Cd’jV,~ 

11 (Vih.’ 0) = - 0; (I - VI,&) - 03V,~ 

t!c (Vi&, 0) =: O’I (I - v,lo’l) + cd* (V,? -v.‘,) 

c (Vik, 0) -= cd2 ( I - V,,d) 

It is interesting to observe that the expressions appearing on the 
left of (3.8) and (3.9) contain the mechanical characteristics of the 

structure of the ring (the quantities vik, oi *) and the parameters of 

the unperturbed stream (In terms of Tk). Accokdingly. the conditions 

(3.8) and (3.9) can serve as criteria of the stability of a giVen wing 

structure in a supersonic stream. In the computations it is convenient 
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to make use of the tables of the functions 

7’ (0, b) == i “\I’ ial,, (ho) da 

0 

appearing, for example, in [ 3 1. From these it is easy to calculate the 

functions Tk( + iol *) which are of interest here. , 

4. Conditions (3.8) and (3.9) are useful as criteria for the stability 

in the stream of a given wing structure. For variational analysis of the 

structural parameters they appear to be unsuitable in so far as they con- 

tain quantities which are defined in tables. Let us write down approxi-, 

mate expressions for the functions Tk( io) in explicit analytical form. 

For this purpose. we will start from the last of the formulas (2.3) and 

the integral representation of the zero-order Bessel function in the form 

Substituting (4.1) in (2.31, we eventually obtain 

7’, (s) 

Using the fact that 

we obtain the following expressions: 

l’, (s) = 2 c, (s) 
(n+k+ I)! 

n :< I-J 

n 

s sin*’ 8 de = 
2x (2r- I)!! 

2’r ! -7T 

(5.2) 

t’c- ‘II n 

Y”, c,, (,s) = 2x 2 (_ I)’ (2r ;! I)!! (; ) (-&)’ (4.3) 

,‘=” 

The expressions x = An and v are given by the formulas (2.4). Sub- 

stituting in (4.3) s = io, we obtain 

Obviously, we can write 

(2r - I)!! 
r! 

f( s(r-k)+li2 

/i=L 
-% (r-k)+1 

so that 
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*<(zr;,w <2r 

. 

Substituting the last inequality in expression (4.4) and carrying out 

the summation with respect to r, and remembering that all terms of (4.4) 

are positive, we obtain the following estimates: 

min [C, (iw)] = rc[(i+$-(i-#] 

max [C,(io)] = x [(I + Q” - (1 - E)“] (4.5) 

Putting 

.C, (i4 = z [( 1 + 0” - (1 - c)n] ( -L:<r) v2 

we will have 

T, (io) =x 

n-0 

@ + kl+ 1) I- ([iti (I+ 01” - [iw (I-- C)l”I 

In the last formula let us carry out the infinite summarion to obtain 

the final result: 

T,(b) = I io (I+;) 
[io (I; <)I”+’ 1” 

- &!! [iw (I -+ :,q -- 
o-0 . - 

k 

(4.6) 

In view of 

of expression 

In view of the fact that the values of k which are of interest to us 

are not large (k = 0. 1. 2, 3). the approximate expressions (4.6) are 

not very cumbersome when used in conditions (3.8) and (3.9). 

After the final choice of all the Darameters of the wing it is advis- 

able to evaluate the criterion of stability by means of the tabulated 

values of the functions Tk( io). 
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